COMMENTS ON "ON THE POLYGONAL MEMBRANE WITH A CIRCULAR CORE"

P. A. A. Laura and S. A. Vera
Institute of Applied Mechanics (CONICET) and Departments of Engineering and Physics, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina

(Received 9 October 1998)

The writers wish to congratulate the author for his interesting results [1]. With regards to disagreement between the results obtained in reference [1] and those presented in reference [2], the writers would like to clarify the following points.
(1) The case when the fixed center core is large. It was clearly stated in reference [2] that the approximate conformal mapping approach is valid as long as $R_{0} / a<1$. Clearly the approximation is rather crude when b (following the notation presented in reference [1]) is equal to 0.9 . Admittedly Figures 4 through 8 of reference [2] contain a drafting error since the plots were drafted up to $0 \cdot 9$.

The first writer sincerely apologizes for this error for which he became aware through Wang's excellent study [1]. The same error occurs in Table 3 [2]. Apparently the accuracy of the results presented in reference [2] is acceptable for $b<0 \cdot 6$. For larger values of b the co-ordinate functions used in reference [2] yield very high upper bounds. Besides, the azimuthal dependence of the mode shapes should be taken into account when b is large.
(2) The case when the fixed center core is very small (approaching zero). Wang concludes [1] that "if the constraint size is infinitesimally small, the frequency is surprisingly the same as the unconstrained membrane". This, indeed, is a very surprising fact. Professor Wang has provided a very ingenious proof of this fact which, apparently, is also valid for higher eigenvalues, at least in the case of a circular membrane with a central, point support.

Table 1 depicts a series of numerical experiments performed by the writers which show the variation of the first three roots of the equation

$$
\begin{equation*}
Y_{0}(k) J_{0}(k \varepsilon)-J_{0}(k) Y_{0}(k \varepsilon)=0 \tag{1}
\end{equation*}
$$

as ε decreases its value from $0 \cdot 1$ to 10^{-1000}. The calculations have been greatly facilitated by the use of MAPLE [3].

The values depicted in Table 1 show a definite trend approaching the exact values of the roots of the equation

$$
\begin{equation*}
J_{0}(k)=0 . \tag{2}
\end{equation*}
$$

Clearly the co-ordinate functions used in reference [2] yield extremely high upper bounds in the case of a central, point support.

Table 1
Values of k in equation (1) as a function of $\varepsilon=10^{-m}$

Value of m	k_{1}	k_{2}	k_{3}
1	$3 \cdot 313938$	$6 \cdot 857579$	$10 \cdot 377420$
2	$2 \cdot 800921$	$6 \cdot 010900$	$9 \cdot 214165$
3	$2 \cdot 654814$	5.808977	8.967657
4	$2 \cdot 587120$	$5 \cdot 723600$	$8 \cdot 869826$
5	$2 \cdot 548210$	5.676952	8.818144
6	$2 \cdot 522968$	5.647636	8.786318
7	$2 \cdot 505276$	5.627527	$8 \cdot 764782$
8	$2 \cdot 492189$	5.612885	8.749249
9	$2 \cdot 482118$	5.601749	$8 \cdot 737522$
10	2.474127	5.592997	8.728355
11	$2 \cdot 467634$	5.585937	$8 \cdot 720994$
12	$2 \cdot 462252$	5.580122	$8 \cdot 714954$
13	$2 \cdot 457720$	5.575251	$8 \cdot 709908$
14	$2 \cdot 453851$	5.571110	$8 \cdot 705630$
15	$2 \cdot 450509$	5.567547	$8 \cdot 701957$
16	$2 \cdot 447594$	5.564449	$8 \cdot 698769$
17	$2 \cdot 445028$	5.561730	$8 \cdot 695976$
18	$2 \cdot 442753$	5.559325	$8 \cdot 693510$
19	$2 \cdot 440721$	5.557183	$8 \cdot 691315$
20	$2 \cdot 438896$	5.555262	$8 \cdot 689350$
1000	$2 \cdot 405495$	5•520758	$8 \cdot 654409$
Exact values	$2 \cdot 4048256$	5.5200781	8.6537279

An experimental program will be performed by the writers in order to test the validity of present, analytical results.

ACKNOWLEDGMENT

The present study is sponsored by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur.

REFERENCES

1. C. Y. Wang 1998 Journal of Sound and Vibration 215, 195-199. On the polygonal membrane with a circular core.
2. P. A. A. Laura, E. Romanelli, and M. J. Maurizi 1972 Journal of Sound and Vibration 20, 27-38. On the analysis of waveguides of doubly connected cross section by the method of conformal mapping.
3. B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt 1991 Mapple V. Library Reference Manual. Berlin: Springer.
